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Soliton interactions (for the Korteweg-deVries equation): 
a new perspective 
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Department of Mathematics, National Institute for Higher Education, Limerick, Republic 
of Ireland 

Received 1 April 1986, in final form 23 July 1986 

Abstract. It can be shown that the N-soliton solution of the Korteweg-deVries equation 
can be decomposed into N separate solitons (cf Gardner et a / ,  Calogero and Degasperis 
and Yoneyama). However, it is not immediately clear from the form of their solutions 
how the separate solitons relate directly to the single soliton solution. Here the two-soliton 
case is considered and a decomposition is sought which can be clearly related to the single 
soliton solution. Although it appears that there is a family of such decompositions it is 
shown that only one of these is correct. Although this decomposition is equivalent to the 
decomposition given previously by Gardner et a/ ,  Calogero and Degasperis and Yoneyama, 
the form given here is different. I t  is suggested that the form of solution produced here is 
a more appropriate representation of the solution since i t  is clear how it relates directly 
to the single soliton solution and it is easy, through this form, to analyse the interaction 
of the two solitons. 

The well known solitary wave or soliton solution of the Korteweg-deVries equation 

U, + ~ U U ,  + U,,, = 0 

is 

U = 2a2sech2( 6) 

where 

e = a x - 4 a 3 t  (2) 
(cf Dodd et al (1982) p 11, where the equation and solution are written in slightly 
different form). 

The solution (2) yields the conservation property that 
5 

U dx = 4a. (30) 5, 
We define the path of the soliton as the function x( t )  such that 

[::’ U dx = [,:,, U dx = 2a 

so that at any point along the path equal portions of the soliton are on either side of 
the point x ( r ) .  It is clear, for the function U as given by expression (2), that (36) is 
satisfied by that x( t )  for which 8 = 0. Hence the path is given by putting the argument 
of the sech’ function in (2) equal to zero. 
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L1130 Letter to the Editor 

Hirota (1971) showed how to find multi-soliton solutions of the Kdv equation and 
following his method the two-soliton solution is 

= 2(f fxx  -ff;)/f’ (4a)  

(4b) 

where 

f = 1 + exp(28,) + exp(28,) + A exp(20, + 2e2) 
e , = a , ~ - 4 ~ , t  3 

A = [(a1 - az) / (a ,  + a2)l’. 

3 e 2 = a 2 x - 4 u 2 t  

Consider a decomposition of the solution U, i.e. 

U = U ,  + u2. ( 5 )  

Although there are infinitely many ways to choose u1 and u2 one looks for choices 
such that both U ,  and U, have a form similar to expression (2). A possible choice of 
this type is 

(6a)  

(6b) 

where the expressions ( 6 a )  and (6b) for u1 and u2 are more general forms of expression 
(2). These generalisations involve a variable amplitude and a variable phase shift. 

Furthermore the variation of U ,  from a single soliton is entirely due to 02, the 
characteristic of U,. Likewise the variation of u2 from a single soliton is entirely due 
to e, ,  the characteristic of U ,  . Hence the deviation of U ,  from a single soliton behaviour 
is due to the presence of u2 and vice versa for u2.  One would expect that when u1 
and U, are well separated these effects would diminish, i.e. H(8,) and H(8,) would 
tend to unity and G(0,)  and G(8,) would tend to constant values. 

It is possible to find a family of such function pairs (cf the appendix) with the 
phase shift and amplitude factors, in ( 6 a )  and (6b) ,  given by 

U ,  = 2a:H( e,) sech2[ 6 ,  + G (  e,)] 
U, = 2a:H( e,) sech2[ 0, + G( e,)] 

1 + B ,  exp(28,)+Aexp(48,) 
1 + (1 + A )  exp(28,) + A exp(40,) H ( 4 )  = ( 7 )  

1 + B2 exp(28,) + A exp(46,) 
1 + (1 + A )  exp(28,) + A exp(46,) H(W = 

G ( e , ) = i l n (  1+Aexp(2e1))  

G (  e,) = f In(’ + A  exp(2e2)) 

1 + exp(28,) 

1 + exp(28,) 

where B ,  and B2 are arbitrary constants obeying the constraint 

u : B ~ +  u ~ B ,  = 2 ( ~ ,  - 02)’. (8) 
From the range of possible choices for B ,  and B2 the most obvious choice appears to 
be 
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However, an additional constraint on the values of B, and B2 is that the expressions 
U ,  and u2 given in (6a)  and (6b) should satisfy the conservation property ( 3 a ) ,  i.e. 

W 

U ,  dx = 4a, I-.. 
U, dx = 4a,. 

We therefore need to test whether B ,  and B, as given by (9) lead to expressions for 
U ,  and U, such that ( l o a )  and ( lob)  are satisfied. To do this we use expressions (Al)  
and (4b) to rewrite U ,  given by (6a),  as 

(11) 
8a: exp(28,)[1+ B2 exp(202)+ A exp(4e2)] 

[ l  +exp(28,)+exp(28,)+A exp(28, +2e2)I2’ 
U, = 

Expression (1 1) can be rewritten as 

U, = 
80: exp(28,)[ 1 +2A’lZ exp(202)+A exp(4e2)] 
[l +exp(28,)+exp(2B2)+A exp(28, +28,)]* 

8a: exp(28, +2e2)[B2-2A’/’] 
[ 1 + exp(28,) + exp(202) + A exp(28, + 2e2)]” 

+ 

Expression (12) may also be rewritten as 

exp(28,)+A exp(28,+28,) 
1 +exp(28,)+exp(2e2)+A exp(2Ol+2fl2) 

+ 8 a i F ( B , ,  B2)[B,-2A”’] (13) 

(14) 

where 

F (  e, ,  e,) -. exp(28, +2e2)/[  1 + exp(28,) + exp(20J + A  exp(20, + 2e2)I2. 

Note that F ( B , ,  e,)> 0 in all parts of the xr plane. Then 
r 5 

U ,  dx = 4a, + 8 a : ( B 2  - 2A”’) 1 F (  e, ,  e,) dx L -‘x 
(15) 

so that expression ( l o a )  is satisfied only if 

B2 = 2A”’. (16) 

B 1 -  - -2A”’. (17) 

Similarly, expression ( lob)  is satisfied only if 

One therefore sees that the, apparently obvious, choice (9) for B ,  and Bz is not 
possible since the conservation properties ( loa) and ( lob)  are not satisfied in this 
case. It therefore transpires that the only possible choices for B ,  and B, are those 
given by expressions (16) and (17). 

The solution U as given by expressions (5)-(7) with B , ,  B, given by expression 
(16), (17) is identical to the solution for this problem previously derived by Gardner 
er al (1974) through the inverse scattering method (cf also Calogero and Degasperis 
(1982) 0 3.2.1) and separately by Yoneyama (1984). 
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However, the form of the solution given here is different to the forms of previous 
solutions and  preferable in the sense that it is clear how the solution (as given by 
expressions ( 5 )  and ( 6 a )  and (b ) )  relates to the single soliton solution (2). It is also 
shown subsequently that it is possible to easily analyse the interaction of the two 
solitons using the form of the solution given here. 

For definiteness we consider the case a ,  > a, > 0. Note that expression ( 5 )  for U is 
the sum of two terms where each term has the form of a modified soliton in the sense 
that the first term represents a soliton in the variable 8 ,  when O2 is constant while the 
second term represents a soliton in the variable O2 when 8 ,  is constant. It is therefore 
to be expected that (5) should yield the sum of two solitons as t + im by considering 
the asymptotic behaviour of the first term of (5) for a n y j x e d  (as t +  *CO)  and the 
asymptotic behaviour of the second term of ( 5 )  for a n y j x e d  O2 (as t + +a). The limits 
are: for j x e d  e, ,  8, + --CO as t + -m and Or+ m as t + m (since a ,  > u 2 ) ;  for $xed e,, 
8 ,  -+ m as t + -m and 

The asymptotic behaviour of U, as given by ( 5 ) ,  under the above limiting procedure 
is then 

(18a)  

(18b) 

+ -m as t + CO (since a ,  > a,). 

U,( t + -a) - 20: sech2( e , )  

U,( t + -CO) - 2a: sech2[ e,+: In A] 

ul( t+m)-22a~sech2[8,+fIn A] 

U,( t + m) - 2a: sech2( 8,). (196) 

Expressions (18a)-( 19b) summarise the behaviour of the two solitons. As t + -CO, u1 , 
with larger magnitude ( 2 ~ : )  and larger phase speed ( 4 ~ : )  lies on the x axis at x = 4a: t  
which is further to the left than u 2 ,  with magnitude ( 2 ~ : )  and phase speed ( 4 ~ : )  which 
lies at x = 4a: t  -In A/2a2  on the x axis. As t + +a, u1 lies at x = 4a:t -In A/2a ,  on 
the x axis which is to the right of U, which is at x = 4 a : t  on the x axis. The two 
solitons, u1 and U,, have the same form and speed as t-. ,  --CO and as t + CO as they 
would have if they were single solitons. The only effect on them over time is that u I  
has undergone a phase shift of -! In A fmward along the axis while U, has undergone 
a phase shift of -+ In A backward along the 8, axis. 

By direct analogy with (36) the path of soliton u1 is given from ( 6 a )  by putting 
the argument of the sech' function equal to zero, i.e. 

4 = - f l n [ ( l + A  exp(28,))/( l+exp(2e2))] 

which may be rewritten as 

exp(28,) = [ l  +exp(2e,)]/[l + A  exp(28,)I. 

In expression (20) t should be considered as the independent variable and x the 
dependent variable, i.e. x = x l ( t )  where x , ( t )  is the solution of (20). The function x , ( t )  
also satisfies the analogous expression to (3b), i.e. 

cc 

[-:') u1 d x  = U ,  dx = 2 a l .  

In a similar way the path of the soliton u2 is given by 

exp(28,) = [l  +exp(28,)]/[1 + A  exp(28,)I. 
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I f  the interaction point of the solitons is defined as the point of intersection of their 
paths, this point is given (from (20) and (22)) by 

e,  = e2 = -a In A. (23) 

When expression (23) is solved for x and t the interaction point is found to be 

x = -L( a ,  2 +  a la2+ 4) In ~ / [ a , a J a ,  + a2)I (24) 

The paths of the solitons as given by expressions (20) and (22) are shown in figure 
1. Note the paths are symmetric about the interaction point given by expression (23). 
Substituting expression (23) into expressions ( 5 )  and ( 6 a )  and (66) gives U = 2(a:- a:) 
so that at the interaction point the amplitude of the ‘double’ soliton is the difference 
of the asymptotic amplitudes of the two separate solitons. Note that two solitons of 
nearly equal phase speeds (and hence magnitudes) almost annihilate each other at the 
interaction point. Also the amplitude of the slower soliton is reduced to zero at the 
interaction point. As is clearly shown in figure 1 the slower soliton moves backwards 
while the faster soliton accelerates forwards near the interaction point. 

t = --A In A / [ a , a 2 ( a , +  a* ) ] .  

Figure 1. The paths of the solitons are shown in the xt  plane. The parh of one soliton is 
the broken curve and that of the other is the dotted curve. Also shown are the 8, and O2 
axes and the asymptotes of the paths. The arrows indicate the directions of motion along 
the paths. 
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It is instructive to consider the following extreme cases: (1) U,+ 0, i.e. a2<< a ,  and 

Case (1) is given by a, = &al  where 0 < E << 1 so that the interaction point (x, t )  as 
given by expression (24) becomes x +  l / a ,  and r + $ / a :  or alternatively on using 
expression (23) the interaction point 8, = O2 = -f In A becomes 8,  = 8, = 2.5 which gives 
a point near the origin in the ( e , ,  8,) plane. 

Case (2) is given by a, = a,( 1 - E )  where 0 < E << 1 so that the interaction point (x, t )  
as given by expression (24) becomes x + -3 I n ( f ~ ) / 4 a ,  and t + -In(te)/l6a: which 
give very large positive values for both x and t .  Alternatively on using expression (23) 
the interaction point 8,  = = -a In A becomes 8, = 8, = -+ In(;&) which also gives very 
large positive values for 8,  and 0 2 .  

(2) a,+a,* 

The authors are grateful to R K Dodd for his helpful comments on the initial version 
of this paper and also to an anonymous referee, to J Nimmo, N C Freeman and J 
Gibbons for helpful references to related work. 

Appendix 

Expression (4) for U can be rearranged as follows: expression (4b) gives 

f f x x  -ff = 4[a: exp(28,)+a:  exp(2o2)+2(u, -a2) ’  exp(20, +28,) 

+a:A exp(48,+2e2)+a:A exp(28,+48,)] 

f f X ,  - f :  =4a:p(e2) exp(28,)+4a:p(e1) e x p ( 2 0 ~  

p (  8,) = 1 + B2 exp(28,) + A exp(48,) 

p ( 8 , )  = 1 + B ,  exp(28,)SA exp(48,) 

which can be rewritten as 

where 

a:B, + a:Bz = 2(a ,  - u2)2. 

Expression (4b) also gives 

f ’ =  [ 1 +exp(28,)I2 + 2[ 1 +exp(2B1)][exp(28,) + A exp(28, +2e,)] 

+[exp(28,)+A exp(28,+28,)]* 

= [ l  +exp(28,)][1 + A  exp(28,)I exp(28,) 

x [ ( 1 + A  + exp(281) exp(28,) ) exp(-28,) + 2 + (’ 1 + A  +exp(28,) exp(28,)) exp(2O2)] 

= 4 q ( e , )  exp(28,) cosh*[e,+ G(e , ) ]  (A31 
where 

q(8,)=[1+exp(28,)][1+Aexp(28,)]= 1 + ( 1 + A )  exp(28,)+Aexp(48,)  

and 

G ( B , ) = f l n [ ( l + A  exp(28,))/( l+exp(28,))] .  
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Since expression (4b) for f is symmetric in el  and 13’ therefore expression (A3) for f’  
can be rewritten, by interchanging 8, and 0 2 ,  to obtain 

(‘44) 

Then substituting expressions ( A l )  and (A3) or (A4) as appropriate into expression 
(4a) for U gives 

f’ = 4q( e,) exp(28,) cosh2[ el  + G( eJ. 

(A51 
2a:P(e2) e x p ( 2 U  + 2 a : m )  expW2) 

U =  
d e 2 )  exp(24)  cosh2[&+ G(e2)l d e , )  exp(2e2) cosh2[e2+ G ( 4 ) l  

which is expression (5), on using ( 6 a )  and (66), for U as given earlier. 

of type (A5). 
Note that since B1 and B2 are not, as yet, fixed in (A2) there is a family of solutions 
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